Stochastic parabolic systems with memory terms

Igor Chueshov (Kharkov National University, Ukraine)
vendredi 12 mars 2010

Résumé : The existence and uniqueness of solutions for stochastic reaction-diffusion equation with infinite delay is proved. Sufficient conditions ensuring stability of the zero solution are provided and a possibility of stabilization by noise of the deterministic counterpart of the model is studied. In the case of additive noise we prove that the equation generates a random dynamical system in an appropriate phase space which possesses the random pullback attractor.

Some of the results were established in collaboration with T. Caraballo, P. Marin-Rubio and J. Real


Cet exposé se tiendra en salle C20-13, 20ème étage, Université Paris 1, Centre Pierre Mendes-France, 90 rue de Tolbiac, 75013 Paris (métro : Olympiades).


Agenda

<<

2017

>>

<<

Mai

>>

Aujourd'hui

LuMaMeJeVeSaDi
1234567
891011121314
15161718192021
22232425262728
2930311234

Annonces

ESANN 2016 : European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning


STATLEARN 2016


ICOR 2016