Learning when the data are functions : operator-valued kernels, function-valued RKHS, and beyond.

Hachem Kadri (Projet Sequel, INRIA Lille)
vendredi 25 novembre 2011

Résumé : In this talk, I will discuss concepts and methods of kernel-based learning for functional data. The focus is on the case where covariates as well as responses are functions. Basic concepts of RKHS theory are extended to the domain of functional data analysis and the conditions under which such an extension is feasible are discussed. Our main results demonstrate how basic properties of kernel-based classification and regression known from multivariate statistical analysis can be restated for functional data, if appropriate conditions are satisfied.

Travail joint avec E. Duflos (LAGIS-EC Lille/CNRS), P. Preux (SequeL-INRIA Lille), S. Canu (LITIS-INSA Rouen)


Cet exposé se tiendra en salle C20-13, 20ème étage, Université Paris 1, Centre Pierre Mendès-France, 90 rue de Tolbiac, 75013 Paris (métro : Olympiades).


Agenda

<<

2017

>>

<<

Avril

>>

Aujourd'hui

LuMaMeJeVeSaDi
272829303112
3456789
10111213141516
17181920212223
24252627282930

Annonces

ESANN 2016 : European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning


STATLEARN 2016


ICOR 2016