Clustering dans des modèles de graphes aléatoires à variables latentes

Antoine Channarond - AgroParisTech/INRA
vendredi 28 mars 2014

L’hétérogénéité dans les réseaux peut être modélisée en attribuant à chaque noeud une couleur ou une position dans un espace latent. Dans le cas des couleurs, les probabilités de connexion entre noeuds ne dépendent que des couleurs des noeuds, qui correspondent ainsi à des profils sociaux dans le réseau. Une question importante est en particulier celle de la classification non supervisée, visant à retrouver les couleurs à partir du réseau observé. Dans le cas des positions, on suppose que les arêtes sont d’autant plus probables que les sommets sont proches selon une métrique donnée. Le problème posé est de retrouver la structure en clusters de la densité des positions latentes à partir uniquement du réseau observé. On utilise pour cela les composantes connexes de sous-graphes biens choisis. La problématique commune à ces deux problèmes est le développement d’algorithmes rapides et consistents dans ces modèles, notamment pour traiter efficacement de grands graphes.


Agenda

<<

2017

>>

<<

Juin

>>

Aujourd'hui

LuMaMeJeVeSaDi
2930311234
567891011
12131415161718
19202122232425
262728293012

Annonces

ESANN 2016 : European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning


STATLEARN 2016


ICOR 2016